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There exlst many different variants of sifflelent criteria for the stability
of motion. Estimates of the solutions of the differential equations describ-
ing the disturbed motion of the mechanical systems investigated, are taken
as & principle in these criteria. The accuracy of these estimates depends
essentially on the choice of coefficients of a specifled quadratic form.

With the aid of this form, an auxillary function for the study of the stability
of motlon is derived.

In the present paper we compare various formulas for estimates, Some
methods of improving auxlliary functions are suggested so as to enable obtain-
ing sufficiently flexible and accurate estimates for the solution of differ-~
ential equations with variable coeffilclents.

1. We willl consider the system of homogeneous differential equations
n
@ S e, (b a, =1, ....n) (1.1)
dt m—1
where a,,(t) are continuous, differentiable functions on the given finite
time interval [%¢,, 7] . Many different methods of forming estimates for the

solutlons of such a system of differential equations can be found 1in the
literature, We will try to find a way of improving these estimates.

In order to study the stability of system (1.1) 1t 1s usual to introduce
the function

Vi, z) =W A, 2), A z)= DD A B 2 Z gy (A () = A ) (1:2)
s=lm=1

where 4(¢, x) 1s a quadratic form in the variables x;,..., x. constructed
with the aid of the coefficient matrix of the specified system of different-

ial equations
an () . . .a., (1)

G ()= « o « o o o « « 1.3)

The time derlvative of function (1.2), obtailned by virtue of Equations
(1.1)
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n n
Vit z)=e" Bt 2), B 2)= D D By ()22, (By()=Bpy(t) (1.4)
8=l m=1
wlll also be a quadratic form in the same variables Xyj,+-.5, X, &nd

n
Bsm = Bms = A.sm + T.Asm + Z (aksAkm + akmAks) (s’ m = 1’ vt n) (1'5)
k=1

We will subject the coefficients of the quadratic forms (1.2) and (1.%)
to the conditions

A, >0 (k=1,...,n) (— 1B, t)>0 (k=1,...,n) (1.6)
An(t) ... A, @) Bu(t). . .B,(?)

A )y=] - (k=1,...,n), Bft)=| oo ... (k=1,...,n)
A () ... Ay (1) By (8). . . By(t)

The 1t can be asserted that the introduced auxiliary function (1.2) is
positive sign-definite and that 1ts time derivative (1.4) is negative sign-
definite. Then, obviously, we have t

Vit 2) SV (to 20)y, tor At 2) < A (o %) exp(—- S 7 (0 dr) (4.7
to
The validity of the following inequality may be shown (see [1]. p.38)

An (1) . . . Am (t)

D A< AR ), A, O =| ... ... ... (1.8)

Anl @ ... Arm (t)

where 4,(t) 1s the discriminant of the quadratic form 4(t, x), and ¥, (t)

1s the minor corresponding to the element in the kth row and kth column.
Then we obtain

s t
My () 1
EMIES (A (to, xo)A—k(ﬁ) exp (—-—-2—8 1 (7) d‘t') (k=1,...,n {9

This formula is one of the possible estimates from above of the modulus
of the particular solution of system (1.1) corresponding to the initial con-
ditions X,0, +..5 Xno . If 1in inequality (1.9) the number A(t,, xo) de-
fined by (1.2) at time ¢ = t, is replaced by the upper bound

n n
At (tg, z6%) = D) D) | Ay () | Z4g*z0* (1.10)
s=im=1
then we obtaln the following upper bound for the modulus of the general solu-
tion of system (1.1): ./
. Mk (1 ) ( 1 .
2 1 < (400 20 o5y ) e (— 5\ v@ar ) G=t.m @ap
n .
tn
corresponding to arbitrary initial condlitlons subjected to the sole condition
]1‘]0 ] < xm*, e ey | .’t"O ] < 1‘“0* (1.12)
where Zy* (k=1,..., n) are certain fixed numbers.

Apart from the estimates (1.9) and (1.11), we will find it useful in the
following to use estimates based on a regular family of gquadratic forms.

Assuming v (f) =0 in (1.2), and consequently
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n n

V=A(t, o) = > D 4, 1) zz, (1.13)
s=1m=1

( T?eitime derivative of this form by virtue of the differential equations

1.1 s

n n
A(t, 2) =B*(t, z) = D} > B,.* () 2z, (1.14)
thereby e
n
By =Bt = Ay + D) (G Aim + dpmAxy) (B,m=1,...,n (115)

k=1

On the assumption that the quadratic form (1.13) is positive definite, we
can combine the quadratic forms (1.13) and (1.14) to yleld the regular family

n n
"
B' —pd = Z 2 (Bam - !"‘Asm) Ts%m (1.16)
8=1 m=1
Let u,(t), ..., ua(t) be 1ts characteristic values, 1l.e. the roots of
Equation .

Bu+ —_— p,An « .. B1n+ —_— IJ-A]"

(- S (1.17)
Bm+ - p‘AnL st Bnn+ - p'Ann

then the following inequality is valid
A (i, x)
- g7, 2 S () {1.18)
where
po{t) = min [ (1), . . ., p, (O], 1y (¢) = max [p1 (), . . ., B,y (B)] (1.19)

By integrating inequality (1.18) over the interval [t,, T] and making use
of relations (1.8), (1.10) and (1.12), we obtain an estimate of the general
solution of system (1.1) with initial values lying in the parallelepiped

(1.12): .
M (t) a )

z ()] < (A+ (tes xo%) AL(t-)—)/exp (—%*&}L,_ (v) d'l:‘) k=1,...,n) (1.20)
Aa, 9

Other estimates (see, for example, [1]) are elther obtained by replacing
the quadratic forms (1.2) and (1.13) by the particular types

n n
o (1, @) =" D a (02, a(t, 2) = D) %y (1) T2 (1.21)
m=1 m=1

or they are consequences of the precedilng results. Therefore, these esti-
mates will, in general, be poorer than estimates (1.11) and (1.20).

It 1s easily proved that estimate (1.20) 1s more accurate than estimatc
(1.11). 1In fact, since thc quadratic form (1.13) is sign-definite, th. pair
of quadratic rforms (1.13) and (1.4) can always be reduced to thr cononical
form

B (o) =Cty) = by ¥t AWl D =D y)= Dy, (1.22)

m=1 m=1
if we treat the time ¢ as a parameter. In this case, however, the quadra-
tic forms (1.2) and (1.4) assume the representation

Vi, z)=e" Ny, Vi z)=e"" 3 [tn () +1 Dlym? (1.23)

m=1 m=1

respectively.
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The fact that (1.6) is sign-definite ylelds the inequalities

B () <<—1'(1) (m=1,..., n) (1.24)
from which follows the lnequality
pe ()< —71' (1) (1.25)

Since the right-hand sides of inequalities (1.11) and (1.20) differ only
in the arguments of the exponental function, it follows that estimate (1.20)
is more accurate than estimate (1.11). We will therefore use only estimate
(1.20) in what follows.

2. The accuracy of the above estimates of the solutions of the system of
equations (1.1) depends not only on the way of obtaining these estimates but
also on the quadratic form used as the Liapunov function

V(t )= i i Agm (2) TsZm (Agm (1) = Amg (1)) (2'1)
s=1m=1

This function is usually obtained proceeding from the well-known partial
differential equation [2 and 3]

n

R %‘i( () o1+t B () zn) = U (2, 2) = D} ugs(t) e (2:2)
8=1

s 8=1

where U(t, x) is a given negative-definite quadratic form.

Now we will consider some ways of choosing the coeffilclents of form
U(t, x) which may be useful for the solution of concrete problems.

First me t hod . In determining the form (2.1) it is usual to
assume that all the coefficients of the specified qudratic form U(t, x) are
constant and equal to — 1

This often leads to a coarsening of the obtained estimate,.

Second me thod . Having represented the corfficlents of the

quadratic form (2.1) as
n
Aum (1= A (1) = T a8% 1) g (1) (s m=1,..., n) (2.3)

where dzﬁ(ﬂ (ssmyk=1,...,n m>s) are functions defined in terms of
the coefficlents of the given system (1.1) (see [1], Chapt.II, Section 3),
we will choose the coefficients u,,(t) of the specified quadratic form
U(t, x) from the condition

1 dAn 1 dA

= (2t =...=_1 (2 4 4, () =un(t 2.4
gy ot e ) A e () =0 () (2.4)
hereby, out of all the possible values of uf{t) , the smallest possible is
chosen for which the form (2.1) 1s positive definite.

Substituting Expressions (2.3) for the coefficients into Equation (2.4),
we obtain the followling system of linear differential equations:

- du - ddlk
2 ak¥ (1) 7%’1 = 2 (p, (t) ¥k (e) — d‘t‘ ) wg —uy  (i=1,...,n) (2.5)
k=1 k=1

The solution of this system will be sought by means of the following iter-
ative method:

B (t) = llim pO@),  ug () = limu) (2) (k=1,...,n) (2.8)
—00 l+»co
where u) (#), and u(”kk(n satisfy the system of algebraic equations

n. kk
» (u“"(t)dﬁk (t) — —f;i) ug [ (1) — uy @ (1) =0 (i=1,...,n) (27
k=1
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n kk (-1}
d dt
S (p‘“ (0) g gy — S 4 gk () P/ ) U (1) — u (1) =0
k=1 w7 ()
(=1, l=1,...) (2.8)

The solution of (2.7) and (2.8) in the present case, 1s reduced to the
determination of the least possible eigenvalue for which the form (2.1) 1s
positive definite, and of the corresponding eigenvector.

We will not study the question of convergence of the iterative process
{(2.6). We simply remark that the number of iterations = that is necessary
in order to obtain the functions u(t} and U () (k=1,...,n) with a pre-
scribed accuracy €, and g, (k=1,...,n), 1s determined from the conditions

RO =y <Ce, IO —u V@) <ep (k=1,..., 1) (L<t<T)

In many practical problems 1t 1s sufficlent to limit oneself to the zeroth
approximation of the iterative process, which corresponds to the cholce of
the coefficlents 4,,(t) and u,,(t) (s =1, ..., n) from the conditions

Anim (LA 4w ) == (T () =) (2.9

where d*1,,/dt 1is the time derivative of 4., calculated on the assumption
that the functions u,,{t) (8 =1, ..., n) are constant.

The practical realization of the above method consists either in finding
the smallest possible eigenvalue of system (2.7) and the corresponding eigen-
vector on an electronic digital computer, or in selecting the coefficlents
u,, (8 =1, ..., n) 1n accordance with (2.9) by simply using a slide=-rule.

Third me t hod . This method consists in selectling the negatilve
functions u,,{t) (8 =1, ..., n) such that the function u,{t) (see (1.19))
assumes a minimum at an arbltrary instant of time in the considered interval
[ts, T); thereby u,(t), ..., u,{t) are the eigenvalues of the family of
quadratic forms

B(t, 2)—p () At 2) = 2‘, 3 (Lo - 8yt (1) = () Aumlt)) i2m (2:40)
1me==1
(Gmn is the Kronecker symbol)

The realizakion of this method involves a preliminary caleculation of the
functions =14,...,n and s<m) and the application of the
Monte Carlo ﬁg¥hcd [&] to the ‘choice of variable functions u, . (t) (8 = 1,...
ceey B

If the specified quadratic form U(f, x) 1s assumed to be negative sign-
definite but not in the canonical form, i.e.

" n
Ut x) == 2 2 Ugm (1) TsTm (2.49)
=1 M=)
then more flexible estimates can be obtained. However, such an improvement
of the estimates does not always turn out to be expedient, since it involves

a considerable increase in the extent of the computational operations and
additional expenditure of machine time.

3. As an example we wlll conslder the system of differential equations

d;: a (t) z1 -+ 2q, %?; = oy (t) z1 -+ ass (t) X3 (31)
specified on the closed interval [0,2]. The values of the coefflclients are
b= 0 0.4 0.8 1.2 1.6 2.0
ayy == —4.40 —iy 42 b bl —4.,46 —4.48 —4.50
Qg == —134.50 —131.66 -131.83 —131.99 ~132.15 —132.30

Qgg == —6.300 —8.325 —8.342 —6.362 —6.382 —8.400
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Let the initial conditions lie in the rectangle
| 210 | < 0.01, | 220 ] < 0.5 (3.2)

The estimates of the general solution of system (3.1) will be constructedd
according to Formula (1.20), which in the present case assumes the form

, s
|x1(t)i<X;(t)=([Au ©) , i41(0)] +A=a(0)] An (1) ) X

10000 100 % | An (1) Az (1) — A1 (1)
t
X exp (% g B,y (1) dr) (3-3)
0
_ ([An(0) | 1A1(0)] , A (0) An (¢)
lz,(z>;<x,(z)—([15;00 e ]An(t)An(l;)_Am,(t)) x
t
X exp (‘fg e (7) d) (3.4)
0

We have consldered two varlants of the coefficilents
Uy @) = —~1,  uyy = —1, uy @) = —1.421, uy (1) = —0.01 (3.5)
of the quadratic form
U (8, 2) = uy (0);* + ugy ()25 (3.6)

Here, the second set of coefficlents u“(t) was obtained by the second
method in the variant (2.9).

L1z
LAEY 2 !
] 1
-.-—""-'L‘ i r\.-‘ T [-{r =
0.0 04
\ \ L2
\\/z v
\
oozf\\ 0.3 \\
\ J N
0 > o t 0 P = t
P d
WS 2 1z
3”7 //
-a0—- ~0z—7
I/!\z ,/)\z
204y -D#l )
r_,.—-' '\'T' i -\1
-a08 -6t
Fig. 1 Fig. 2

Below we quote the numerical values of the function u.(t) , together
with x,(t) and x,(t) which are the estimates for the general solution of
system,‘(3.1) with initial conditions lying in the rectangle (3.2), for the
two sets of coefficlents:
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first variant

0 0.4 0.8 1.2 1.6 2.0
T —0.20503 -0, 20344 —0.20506 —0.20571 —4}, 20604 —0,21
Xy = 0.51107.10~1 0.40085-10—1 0.47437- 404 0.45263-10-1 0.43630-10-* O.AZOO&???O“
Xi= 0.50438 0.48428 0.46493 0.44630 0.42096 0,44447
second variant

t= i 0.4 0.8 1.2 1.6 2.0
g == —8 82016 -3,86708 —9. 99T —3.84285 -3 ,08739 —10.02175
Xy == 0.44075-10-* 0.81518.10-* 0.85076.10~3 0.11680-10—2 0.15012.40-4 0.21498-10~%
Xy = 0.52533 0.78374410— 0.10153.10~1, 0.13946-10-2 0,19080. 102 0.25695-10—*

Figs. 1 and 2 show the graphs of the estimates X, (¢t) , ZX;(t) for the
two sets of coefficients (3.5) and the particular solutions x, (t), x,(2)
of system (3.1) for the initial conditions

Ty = 0.01, Tqg = 0.5 (3.7)‘

The numbers 1 and 2 refer to the estimates obtained by the first and
second methods, respectively, and 3 refers to the partlcular solution.

From these graphs it 1s clear that, in comparison with the first method,
the second one enables a considerable improvement in the quallty of the esti-
mates obtained.
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